
STEADY-STATE VIBRATIONS GB' PLATES WITH FREE EDGES 

(US'WOVIVSBESIA KOISBANIIA PLASTINCK SO SVCBO%tlU KFUIMI ) 

PMM vo1.29, Np 5, pp.920-924 

A. I. LIKRODED 

(Moscow) 

(Received November 17, 1964) 

This investigation is concerned with the forced, periodic vibration of a 
homogeneous, isotropic, uniformly thick plate with free edges. It is assumed 
that the plate consists of an arbitrary shaped, simply connected regionbounded 
by a curve with differentiable curvature. On the basis of considerations 
given in cl and 23, the problem Is reduced to a Fredholm integral equation 
of the second kind. The kernel of the resultant Integral equation is expressed 
in terms of known special functions. The existence of a solution is investl- 
gated. 

1. Assume that the plate occupies an arbitrary, simply connected region 
S in the plane z = x + ty , and that the curvature of the bounding curve 
L is everywhere differentiable. The coordinate origin Is taken to be inside 
the region S . The amplitude of the forced vibrations will be written as 
a sum w (2, y) = u (I, y) + no (2, Y), where u0 (x, Y) Is the particular solution 
of the equation, and u(x,v) must satisfy Equation 

nnu-l.4u =o 
( 

A=;+$) 

with the following boundary conditions (*): 

Here, X Is related to the frequency, e is the angle between the outward 
normal and the x-axis and u Is Polason’s ratio. The first condition In 
(1.2) Implies the vanishing of the bending moment on the boundary L ; the 
second condition implies the vanishing of the transverse shear resultant. 
We will seek a solution u(r,y) in Integral form 

a (5, Y) = 
c 

1~1 (8) ~1 (s, r, Y) + vz (8) F2 (s, X, Y)I ds (1.3) 

i 

Here y (S) and vats) are aown density functions; tne kernel func- 
tions F, (e,x,y) may be expressed as 

l ) For the static deflection case, 
[3 and 41. 

the boundary conditions become simplified 
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co 

Fj (s, x, y) = f s [gi, 1 (u)eyl (4 + gj, 2 (u) ey* (‘)I da (i = 1, 2) (4.4) 
-cc 

.yl (a) = iac1 - ca JGqz, 72 (a) = ictcl - c2 1/C@ - ha, r* = id (t - 2) 

cl = Re [t'(t -z)J, cs = Im [t'(t - z)] (t = e + iq) 

where f is a generic boundary point and the prime denotes differentiation 
with respect to s . The radicals in the preceding equations are either 
positive real or positive Imaginary. It Is not difficult to show that the 
function u(x,y) In (1.3) satisfies Equation (1.1). The coefficients gi,Ir(a) 
are later chosen in such a manner that substitution of U(X,V) Into the 
boundary conditions leads to Fredholm Integral equations of the second kind. 

The boundary conditions will now be transformed so as to simplify the 
procedure of obtaining the coefficients &'i,k((a), By differentiating the first 
condition in (1.2) with respect to 8 and combining the result with the 
expresalon for the moment M[w(t.)] at a certain point t. on the boundary 
L 9 we obtain (when the orders of the highest-order derivatives are the same 
In both boundary conditions the procedure of obtaining the coefficients 
gi,k (a) becomes slmpllfled [21) 

dq + M [w (to)] = 0 (1.5) 

Since the solution belongs to the class of single-valued functions, lnte- 
gratlon of (1.5) with respect to 6 taken along the boundary L , estab- 
lishes the equivalence of (1.5) with'the first condition in (1.2). By using 
(1.5) together with the second condition In (1.2), the boundary conditions 
are formulated In terms of third-order differential operators. 

Note The following two Integral relations for the vibration ampll- 
tude may be ibtained from (1.2) 

) Q (w) ds = \ ‘+ ds = 0, 
i 

\ M (w) ds = 0 
i 

(1.6) 

Transforming the contour integrals in (1.6) Into area Integrals and noting 
that w(x,v) must satisfy Equation MAW - hpw = JJ(X,Y), we obtain 

k4\jw(x, y)ds=-\jAx, y)dS, "4\j=4x, y)dS = - \\ v(", Y) dS (1.7) 

Here P(x,y) is the amplitude of the distributed load divided by the flex- 
ural rigidity of the plate. The first relation In (1.7) pertains to the 
dlsplac~ment~amplltud~ of the mass center of the platei- the second ertalns 
to the angular rotation of the plate as a rigid body. For h - 0 , s 1.7) 
yields the necessary conUltlons for the existence of a~solutlonln the case of 
static deflection of the plate c4]. We will assume .that the resultant force 
and moment (right-hand sides In (1.7)) are equal to zero (the general case 
is reducible to the one under discussion). 

We will write the functions F,(s,x,y) and F2(s,x,p) In the form 
D 

Fj (S, 5, Y) = -$ Re 
c 

[gj, leY’ (a) + gj, 2 eyl@)] da + (1.8) 
6 

2 = 
+-Re 

x s 
[g. eylCO) I.1 

+ gj,2eY*(")] da (i = 1, 2) 

D 

Here D Is a sufficiently large positive number. !l!he slngularltles of the 
functions F, (e,x,y) are contained In the second terms. For large values 
of a , the coefficients ffi,l, may be expanded 
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In order to investigate the slngularltles of the functions F1(s,x,v) and 
Fz(a,r,II) , use will be made of the relations 

u 

lJ (r = 1/(x - FP + (Y - W) 
Here Hot2’ (hr) Is the Hankel function of the second k.lnd while J,,(Ar) 

and IO(W) are the ordinary and modified Bessel functions of the first kind, 
respectively. The dots represent terms havlng continuous third derivatives. 

From (1.9) and 
F,(~,x,Y) and 

(1.10 , 
Fz(s,X,V 1 

we obtain the principal parts of the functions 
; denoting these by rl and ra, we have 

rl = - '+ 
{ 
Im [t’2 (2 - t)% In (t-z)] + L.$L r20 

1 

rz = - f 
{ 

+ a) Re [t’$(, In)] + (1 - c) ra In r 
I 

(1.11) 
(1 

2. Introduce the complex density function CO(t) = V1-k ivg, then the prin- 
clpal part of the function u(x,y) In (1.3) may be written 

u* (z, Y) = i \I0 (t) (rl - irz) f &@ (rl + irs)] ds 

L 
(2.1) 

We now combine the boundary conditions (1.2) into the following single 
complex equation 

II 

C(u)= M (u)+ i 
s 
Q(U)& 3 2 (1 -6) x gT- 22% 

[ 

t a% - Is -8 G dt = f (t) 
f(t) = -M 04 -i \ Q tug) ds, (2.2) 

.2_22 
* l-5 

Taking Into account the fact that7relatlon (2.2) Is obtainable from con- 
dition (1.5) and the second condltZon In (1.2) by msans'of Integration with 
respect to 8 along the boundary, we arrive at the following new density 
function In (2.1): t 

52 (t) = \ o (t) dt 

tcl 
Integrating by parts and neglecting the terms which contain no slngularl- 

ties, we arrive at the following modified representation of the principal 
Part of U(X,Y) 

1 
U*(r,y)=--1rn {\fi(t) (t[z)n (I -;) + xl+ ;) - X] dt} (2.3) 

L 

We will assume that Cl(t) satisfies a Halder condition on L . The ana- 
lytic functions cp(a) and x(a) which, in accordance with Goursat's formula, 
correspond to the biharmonk function u#(x,y) are equal to 
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cp(2)=~SQ(t)ln(l--r)dt, Ip (4 = x’ (2) 

xi;)=~{%~~(iT~)[ln(l-~)-~]~-~~(t)~ln(~-~) df} (2*4) 
L 

Introduce the functions 

IIl(h, t, z)=- $ [N (1Lr) + K (hr) + (Jo (hr) - lo (hr)) (i@ - In t)J 

Ih 6% t, 2) = $ IN (hr) -K (hr) + (Jo (hr) + I, (hr)) (i@ - In t)] 

N (W = No (hr) -Jo (hr) (In% 5 + Cl, K (hr) = K. (hr) + Jo (hr) (In% A + C) 

Here XO((Xr) 1s the Bessel function of second kind of order zero, &(XF) 
IS the modified Bessel function of second kind, and C Is Euler's constant. 
The functions II,(A,t,a) (t - 1, 2) satisfy Equation (l.l), and may be wrlt- 
ten in the form 

&(h, t, e)=+[In(i--+)-i] +Pl(h, t, 2) 

Ila (h, t, 2) = In I- + + Pa (h, t, 2) ( 1 (2.43) 

Here P1(X,t,r) and P1(X,trz) are entire functions of the parameter A 
which vanish when X I 0 and which have third order continuous derivatives 
with respect to t and z . In addition, Introduce the two functions 

El (a, t, to) = PI (h, t, to) + XPI (h, t, to) - & IN @PII) + K @PO)1 

,iJ2 (k, t, 26) = Pz (I., t, to) + XPZ (h, t, h,) + N (APO) - K (~P,)v Po2 = (to - Pj (r;;---gri 

Here S Is some fixed point In the z-plane not lyln~ on L . By taking 
Into account (2.6), the sought function u(x,y ) whose principal part Is 
u*(x,y) Is easily constructed. This function takes the form 

i 
u(z, ar) =zIm {\ 

n sz (t) g [Ill (I., t, 2) + xn1 (h, t, z)] dt - ‘4 (Q) - av(nP) aZ 
i 

1 
- 

where the following notation has been used 

A(Q)= \ Q(t)dt, B(k)= 8 \ a2v(hro) i’2dt 1-a 
(B(I)) = go) 

i 
L atw 

V (bo) = -$ IN (hro) + K (kro)], ros = .zZ, P” = (2 -P) (2 -P) 

h, (a, t) = 4 tl’“: a) L El (I., t, to) toc2dto, 
s 

h*(h, t) = & 
s 

a%(L t, to)- 

ai,a 
to’2dtr, 

L 

The right-hand side of (2.8) holds for all values of ), except for the 
zeros of B(X). 

of the derivatives 

we arrive at the following Fredholm Integral equation of the second 

[Q(t) Cl@, 1, to) + a(t) Gn(L t, to)] dt = h(to) (2.9) 
L 
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The kernels and the rl ht-hand side of the above equation are continuous 
functions of t and to ‘i it easily seen that their continuity Is guaranteed 
by.the presence of the last two terms in (2.8)). We will now show that when 
A = 0 Equation (2.9) has a unique solution. To prove this assertion, it is 
sufficient to show that the corresponding homogeneous equation 

dt -t R [to, A(Q)] = 0 
L 

(2.10) 

has. only the trivial solution. Define R[ t, A (n)l 

Let i&(t) be a solution of Equation (2.10); the corres ondlng functions 

'p 
(a) and l(z) in (2.4) will be denoted by Q,(E) and 
2.10) 

$O(r . Then Equation P 
may be written as: 

-- 
-$ [xcpo(t) - Qo'(t)- *o(t)] -L R [t, A No)1 = 0 (2.11) 

Integrating (2.11) with respect to t along the closed contour L and 
taking Into account Equations 

x 22 2i6 (8) i%l 1 
--- 
t1 G 1 

dt= 1_-3, x~-~ 1 (2.12) 

we obtain 

iij(p)A(&)-(I+ a)A(Qo) \+ =O, 

L 
0, if B is outside S 

(2.13) 

By combining (2.13) with Its con&gate, we obtain a system of homogeneous 
linear equations In A (Q,,) and 'A (a,). In order that the determinant of the 
system be nonzero, we must have 

(2.14) 

The integral In (2.14) Is a function of B , SO that (2.14) can obvlousi 
always be satisfied by an appropriate choice of 6 . Upon satisfying (2.14 7 , 

we have A(%) = 0 
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considerations, It Is clear that (2.11) 1s equivalent to 
equations: 

P 
wow - - - tcp; (t) - $0 (t) = con&, Qo(t)dt=O (2.15) 

L 

Integrating by parts the expressions for the functions cpo(z) and $,(z) 
and taking into account the second relation In (2.15), we obtain 

t 
1 

‘po(z)=---i s ( Ql (t) y& .- +) dt, 
7. 

Q,(t) = \ Qo (t) dt 
. 
4a 

~O(Z)F 2; \%$&-+t+&i \Qo(t)& 
L L 

(2.16) 

Then, proceeding as In [5 and 63, we can show that n,(t) = const , and, 
consequently, &l(t) = 0 everywhere in L . Whence, based on Tamarkln's 
theorem [71, the existence of a solution of the integral equation (2.9) fol- 
lows for nearly all values of the parameter X . 
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